

Mark Scheme (Results)

October 2019

Pearson Edexcel International Advanced Level In Physics (WPH12) Paper 01 Waves and Electricity

Question Number	Answer	Mark
1	C is the correct answer as the resistance of both listed components decreases as	
	the applied potential difference increases.	
	A is not the correct answer as the resistance of an ohmic conductor remains constant	
	when the applied potential difference increases.	
	B is not the correct answer as the resistance of a filament lamp increases when the	
	applied potential difference increases.	
	D is not the correct answer as the resistance of a filament lamp increases when the	
	applied potential difference increases.	(1)
2	A is the correct answer as this represents the current in the internal resistance	
	multiplied by the p.d. across the internal resistance.	
	B is not the correct answer as this is the power dissipated by the external resistance	
	C is not the correct answer as this is the power dissipated by the whole circuit.	
	D is not the correct answer as this equation combines the p.d. across the external	
	resistance with the value for the internal resistance – as a result, it does not represent	
	the power of any of the components in the circuit	(1)
3	B is the correct answer as $n_{\text{water}} \times v_{\text{water}} = n_{\text{glass}} \times v_{\text{glass}}$	
	A is not the correct answer as $n_{\text{water}} \times v_{\text{water}} = n_{\text{glass}} \times v_{\text{glass}}$	
	C is not the correct answer as $n_{\text{water}} \times v_{\text{water}} = n_{\text{glass}} \times v_{\text{glass}}$	
	D is not the correct answer as $n_{\text{water}} \times v_{\text{water}} = n_{\text{glass}} \times v_{\text{glass}}$	(1)
4	B is the correct answer as increasing light intensity increases the number of	
	electrons released per second (N), but does not affect the maximum kinetic	
	energy of each released electron (E_k)	
	A is not the correct answer as the graphs show no effect on N and an effect on E_k	
	C is not the correct answer as the graphs show an effect on E_k	
	D is not the correct answer as the graphs show no effect on N	(1)
5	A is the correct answer $v = I/nAq$ – doubling d quadruples A, and with n	
	doubling also, the denominator is 8 times larger	
	B is not the correct answer as A is quadrupled and n is doubled (factor of 8 overall)	
	C is not the correct answer as A is quadrupled and n is doubled (factor of 8 overall)	
	D is not the correct answer as A is quadrupled and n is doubled (factor of 8 overall)	(1)
6	B is the correct answer as polarisation only occurs in transverse waves	
	A is not the correct answer as diffraction can be demonstrated for all waves	
	C is not the correct answer as refraction can be demonstrated for all waves	
	D is not the correct answer as superposition can be demonstrated for all waves	(1)
7	D is the correct answer as efficiency is the useful power output (250W) divided	
	by the total power input (Intensity x Area).	
	A is not the correct answer as this is (Power × Area) / Intensity	
	B is not the correct answer as this is Intensity / (Power × Area)	
	C is not the correct answer as this is the reciprocal of the efficiency equation	(1)
8	D is the correct answer as $P = V^2/R$, so for a constant resistance, doubling V	
	results in P quadrupling.	
	A is not the correct answer as this suggests that P is constant regardless of V	
	B is not the correct answer as this suggests that P is directly proportional to V	
	C is not the correct answer as this suggests that doubling P quadruples V	(1)

9	B is the correct answer as $7\lambda/4$ represents 3.5 radians, which is 1.5π radians out of phase.	
	A is not the correct answer as $3\lambda/2$ represents 3π radians which is antiphase	
	C is not the correct answer as 3λ represents 6π radians which is in phase	
	D is not the correct answer as $7\lambda/2$ represents 7π radians, which is antiphase	(1)
10	B is the correct answer as $n\lambda = d\sin\theta$, and reducing d would increase $\sin\theta$ if n and λ remain the same.	
	A is not the correct answer as this would result in the maxima being closer together	
	C is not the correct answer as this would have no effect on the distance	
	D is not the correct answer as this would result in the maxima being closer together	(1)

Question	Answer		Mark
Number			
11	Use of $E = hf$	(1)	
	Converts J to eV	(1)	
	Transition from (-) 0.54eV to (-) 0.85eV	(1)	(3)
	Example of calculation		
	$\overline{E = hf} = (6.63 \times 10^{-34} \text{ Js}) \times (7.48 \times 10^{13} \text{ Hz}) = 4.96 \times 10^{-20} \text{ J}$		
	$4.96 \times 10^{-20} \text{J} / (1.60 \times 10^{-19} \text{J eV}^{-1}) = 0.31 \text{eV}$		
	Total for question 11		3

Question	Answer		Mark
Number			
12a	Use of $p = mv$ for electron ($m = 9.11 \times 10^{-31}$ kg used)	(1)	
	Use of $\lambda = h/p$	(1)	
	Speed of car = 1.5×10^{-26} (m s ⁻¹ which is very small) so student suggestion is		
	correct.	(1)	(3)
	Example of calculation p for electron = $(9.11 \times 10^{-31} \text{ kg}) (1.5 \times 10^7 \text{ m s}^{-1}) = 1.37 \times 10^{-23} \text{ kgms}^{-1}$ λ for electron = $(6.63 \times 10^{-34} \text{ Js}) / (1.37 \times 10^{-23} \text{ m})$ = $4.8 \times 10^{-11} \text{ m}$. For the car, $4.8 \times 10^{-11} \text{ m} = (6.63 \times 10^{-34} \text{ Js}) / (900 \text{ kg}) v$ $v = 1.5 \times 10^{-26} \text{ m s}^{-1}$		
12b	The car is not a single particle Or The car does not behave like a wave/particle		
	Or de Broglie equation has only been demonstrated for microscopic particles	(1)	(1)
	Total for question 12	(*)	4

Question Number	Answer	Mark
13a	Use of $V=W/Q$ (1) $W = 7.92 \times 10^5 \text{J}$ (1)	(2)
	Example of calculation $W = V \times Q = 22 \times 36,000 = 792,000 \text{ J}$	
13bi	Use of speed = distance/time (1) Time = 0.45 s (1) (Accept 7.5×10^{-3} minutes or 1.25×10^{-4} hours)	(2)
	Example of calculation $16 \text{ km hr}^{-1} = 16,000 \text{ m/ } 3,600 \text{ s} = 4.4 \text{ m s}^{-1}$ Time = distance / speed = 2.0 m / 4.4 m s ⁻¹ = 0.45 seconds.	
13bii	Use of $I = Q / t$ (1) Calculates total charge used in 2.00 m Number of electrons = 4.2×10^{19} (1) (e.c.f. from (i))	
	OR Use of speed = distance / time Calculates total charge used in 2.00m Number of electrons = 4.2 × 10 ¹⁹ (no e.c.f. required from (i) for this method) (1) (1)	(3)
	Example of calculation I = Q / t = 36,000 C / (40 x 60) s = 15 A Total charge used in $2.00\text{m} = I \times t = 15 \text{ A} \times 0.45 \text{ s} = 6.75 \text{ C}$ number of electrons = $6.75 \text{ C} / 1.6 \times 10^{-19} \text{ C} = 4.2 \times 10^{19}$	
	Total for question 13	7

Question	Answer			Mark
Number				1.2411
*14a		sesses a student's ability or with linkages and fully	to show a coherent and logically sustained reasoning.	
		ed for indicative content nows lines of reasoning.	and for how the answer is	
	The following ta indicative conter	ble shows how the mark	s should be awarded for	
	Number of indicative	Number of marks awarded		
	marking	for indicative		
	points seen in answer	marking points		
	6	4		
	5–4	3		
	3–2	2		
	1	1		
	0	0		
	The following ta structure and line	ble shows how the mark es of reasoning.	s should be awarded for	
			Number of marks awarded for structure of answer and sustained line of reasoning	
		•	2	
	Answer is parti	ally structured with	1	
	Answer has no points and is u	linkages between	0	
	thermiste When te When te Decrease Or curre	mperature is higher, greator) mperature is higher, more mperature is higher, lowed p.d. across thermistor ent in circuit/thermistor is d p.d. across fixed resisted air conditioning application.		(6)
	,	statements for IC 1,2, 3 ontradicting statements for	and 4) or IC4 e.g. lower V so lower I)	

14b	Ratio of p.d.s to resistances	(1)	
	See either 775 Ω or 263 Ω for light dependent resistor	(1)	
	Difference = $(-)$ 512 Ω	(1)	
	Or		
	Use of $R = V/I$ to calculate current	(1)	
	See either 775 Ω or 263 Ω for light dependent resistor	(1)	
	Difference = $(-)$ 512 Ω	(1)	(3)
	Example of calculation $\frac{7.29 \text{ V}}{4.71 \text{ V}} = \frac{1200 \Omega}{R} \text{ so } R = 775 \Omega$		
	$\frac{9.84 \text{ V}}{2.16 \text{ V}} = \frac{1200 \Omega}{R} \text{ so } R = 263 \Omega$		
	Difference in resistance = 263 Ω - 775 Ω = (-) 512 Ω		
	Total for question 14		9

Question Number	Answer				Mark
15a	Diameter of wire with a mid	crometer or digital callipe	r	(1)	
	Length of wire using a met	re rule		(1)	
	Potential difference (in para		voltmeter and current (in		
	series with the wire) with a				
	Or resistance, using an ohn	nmeter (in parallel with th	e wire)	(1)	(3)
15b	Use of πr^2 or $\pi d^2/4$			(1)	
	Suitable axes Corresponding gradient to g	nive resistivity		(1)	
	(MP3 dependent on MP2)	give resistivity		(1)	(3)
	Some examples of appropri	ate axes			
	y-axis	x-axis	gradient		
	R	l	ρ / A		
	R	l/A	ρ		
	RA	1	ρ		
	l	R	A/ρ		
	1	RA	$1/\rho$		
	l/A	R	$1/\rho$		
	V	Il	ρ/A		
	Total for question 15				6

Question Number	Answer		Mark
16a	(Two) waves travelling in opposite directions		
	Or Wave reflected back on itself	(1)	
	Superposition / interference occurs	(1)	(2)
16bi	Units of u are ms ⁻¹ and units of d are m	(1)	
	Units of f are s^{-1}	(1)	(2)
16bii	Use of $v = \sqrt{T/\mu}$	(1)	
	Recognises that $\lambda = 2L/3$ Or states that $\lambda = 0.22$ m	(1)	
	Or states that $\lambda = 0.22 \text{ m}$	(1)	
	Uses their <u>calculated</u> v and their λ in $v = f\lambda$ to establish f	(1)	
	Use of $f = Ku/d$ with their f to establish u	(1)	
	$u = 1.1 \text{ ms}^{-1}$	(1)	(5)
	Example of calculation $v = \sqrt{(T/\mu)} = \sqrt{(63 \text{N} / 0.58 \times 10^{-3} \text{ kgm}^{-1})} = 330 \text{ ms}^{-1}$ $\lambda = 2L/3 = (2 \times 0.33 / 3) = 0.22 \text{ m}$ $f = v/\lambda = 330 \text{ ms}^{-1} / 0.22 \text{ m} = 1500 \text{ Hz}$ $u = fd/K = [1500 \text{ Hz} \times (0.15 \times 10^{-3} \text{ m})] / 0.2 = 1.125 \text{ ms}^{-1}$		
	Total for question 16		9

Question Number	Answer		Mark
17a	(Pulse reflects at) a boundary between different materials/media/densities	(1)	(1)
	(allow "between steel and air" for "between different materials") (allow "speed of ultrasound in air is different to that of steel")		
17b	Method 1 (Calculating distance to crack)		
	Reads time difference of 24.5 - 25 µs from graph	(1)	
	Use of speed = distance/time to calculate distance	(1)	
	Uses half time or half distance in calculation	(1)	
	Depth = 7.1 - 7.3 cm < 15cm, so reflection is from a crack Or Depth = 7.1 - 7.3 cm < 15cm, so cannot be from bottom of rail	(1)	
	OR Method 2 (Calculating time to bottom of rail and back)		
	Use of speed = distance/time to calculate time	(1)	
	Uses 30cm in calculation	(1)	
	Reads time difference of 24.5 - 25 μs from graph	(1)	
	Time = $52\mu s > 24.5 - 25 \ \mu s$, so reflection is from a crack Or Time = $52\mu s > 24.5 - 25 \ \mu s$, so cannot be from the bottom of rail	(1)	(4)
	Example of calculation Time between transmitting and receiving = $24.75\mu s$ So time taken to get to point of reflection = $12.375\mu s$ Distance = speed × time = $5800 \text{ m s}^{-1} \times (12.375 \times 10^{-6})$ = 0.072 m .		
17c	Most/all of the ultrasound is reflected by the first crack Or Pulse does not reach second crack Or None of the pulse is transmitted after the crack Or Ultrasound signal from deeper cracks is too weak to be detected	(1)	(1)
17d	The idea that there is a time delay before reflected/received signals return	(1)	
-	The idea that the train will no longer be in the same position if it is moving too fast. Or the idea that the train will be in the same/similar position of it is moving	()	
	slowly	(1)	(2)
	Total for question 17		8

Question Number	Answer		Mark
18a	Vibrations/oscillations in one plane which includes the direction of wave travel	(1) (1)	
	Or		
	Vibrations/oscillations in one direction	(1)	
	perpendicular to the direction of wave travel	(1)	(2)
18b	The refracted ray lacks the planes of oscillation in the reflected light.		
	Or the refracted ray has a plane of polarisation perpendicular to the plane of polarisation of the reflected light	(1)	
	So, the refracted ray must also be partially plane polarised	(1)	(2)
	(MP2 conditional on awarding MP1)		
18ci	See $n_a \sin \theta_a = n_g \sin \theta_g$ Or $n_a \sin \theta_B = n_g \sin r$	(1)	
	$n_a \sin(\theta_{\rm B}) = n_g \sin(90 - \theta_{\rm B})$		
	$\mathbf{Or} \ n_a \sin(\theta_{\rm B}) = n_g \cos(\theta_{\rm B})$	(1)	
	$\mathbf{Or} \sin r = \cos \theta_{\mathrm{B}}$	(1)	
	$\sin (\theta_B)$ divided by $\cos(\theta_B)$ to give $\tan (\theta_B)$ leading to answer	(1)	(3)
18cii	Substitution of values into $tan(\theta_B) = \frac{n_g}{n_a}$	(1)	
	$\theta_{\rm B}$ = 56°	(1)	(2)
	Example of calculation		
	$\tan(\theta_{\rm B}) = \frac{n_g}{n_a}$		
	$\theta_{\rm B} = \tan^{-1} (1.50 / 1.00) = 56^{\circ}$		
18ciii	Refractive index (of glass) is greater for violet $ \begin{array}{ccc} n_{q} & & \\ & & \\ \end{array} $		
	Or $\frac{n_g}{n_a}$ is greater for violet	(1)	
	Or $\tan \theta_{\rm B} / \sin \theta_{\rm B} / \theta_{\rm B}$ is greater for violet	(1)	
	Clearly links one of the above to the student being incorrect.	(1)	(2)
	Total for question 18		11

Question	Answer		Mark
Number			
19ai	Minimum labelled at either rarefaction	(1)	(1)
19aii	Zero displacement at all compressions and/or all rarefactions.	(1)	
	Two complete wave cycles shown.	(1)	(2)
	↑		

	neut neut		
	A distance		
	disip		
	(Allow graph inverted in relation to the one shown above)		
19bi	Describes an initial situation where the two traces are in antiphase / phase	(1)	
	1	()	
	Record the position of the microphone (from the metre rule)		
	Or Measure the distance from the loudspeaker to the microphone	(1)	
	Management of the state of the	(1)	
	Move microphone (gradually) until the two traces are next in antiphase / phase	(1)	
	Record the new position of the microphone and calculate the distance moved		
	by the microphone		
	Or Measure the new distance from the loudspeaker to the microphone and		
	calculate the distance moved by the microphone	(1)	
	Multiply calculated/measured wavelength by frequency to determine the speed	(1)	(5)
	Or Describes a suitable graph to determine the speed	(1)	(5)
	(MP5 - examples of suitable graphs are λ against $1/f$ or f against $1/\lambda$. Both		
	would give a gradient of v which needs to be stated to achieve the mark)		
19bii	Time period read off oscilloscope (from one point to the next in phase point)		
	Or number of waves per second read off oscilloscope	(1)	
401.111	Time period (for both traces) is the same	(1)	(2)
19biii	Use of $v = f\lambda$	(1)	
	Calculates λ of 8.5 cm (for 4.0 kHz) and 2.3 cm (for 15.0 kHz)	(1)	
	Calculates x of 6.5 cm (for 4.0 kHz) and 2.5 cm (for 15.0 kHz)	(1)	
	Percentage uncertainty greater for 2.3cm than 8.5cm (so student correct)		
	Or Percentage uncertainty greater for 15.0kHz than 4.0kHz (so student		
	correct)		
	Or Percentage uncertainty is reduced if measurements taken across several		
	wavelengths (so student not necessarily correct)	(1)	(3)
	(Do not allow "uncertainty" for "nercenters uncertainty")		
	(Do not allow "uncertainty" for "percentage uncertainty")		
	Example of calculation		
	$\lambda = v/f = (340 \text{ ms}^{-1}) / (4000 \text{ Hz}) = 0.085 \text{ m}$		
	$\lambda = v/f = (340 \text{ ms}^{-1}) / (15000 \text{ Hz}) = 0.023 \text{ m}$		
	Total for question 19		13